Use of Stability Selection for signal detection in pharmacovigilance

Ismaïl Ahmed and Pascale Tubert-Bitter

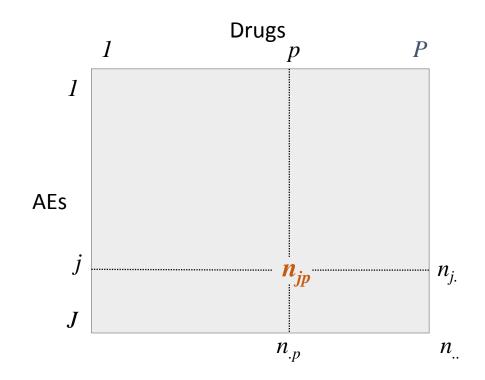
Inserm UMR 1181 « Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases » (B2PHI)

Institut Pasteur, UMR 1181, B2PHI

Univ. Versailles St Quentin, UMR 1181, B2PHI

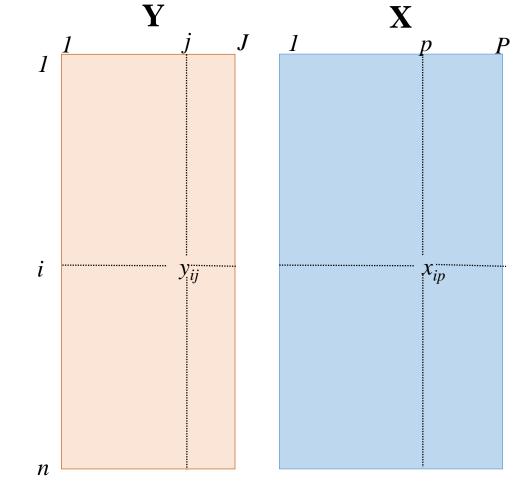
Introduction (1)

- Pharmacovigilance systems
 - Detection of new adverse effects of licensed drugs
 - Based on spontaneous reports (SRs) of possible adverse drug reactions (ADRs)
 - Very large databases
- Automatic signal detection methods
 - Applied to aggregated data
 - n_{jp} : Number of SRs involving AE j and drugs p
 - Called disproportionality methods



Introduction (2)

- More recently, the idea has been proposed to return to the analysis of individual spontaneous reports (Caster et al. 2010)
- Two matrices
 - Y: matrix of AEs X: matrix of drugs
 - Y and X are binary
 - Y and X are also sparse
- Use of lasso logistic regression
- Much more computationally intensive
 - One lasso per AE (several thousands)
 - Very large databases



Lasso (Tibshirani 1996)

- Belongs to the family of penalized regressions
- For a given AE

$$(\hat{\beta}_0, \dots, \hat{\beta}_P)^{\lambda} = \operatorname{argmax}(\operatorname{logLik}(\beta_0, \dots, \beta_P) - \lambda \sum_{p=1}^{P} |\beta_p|)$$

- A major difficulty is to choose the constraint λ
 - When the purpose is prediction, the k-fold cross-validation is a standard choice

n

• In a variable selection context, fixing this parameter is much more challenging

Stability Selection (Meinshausen et al. 2010)

- General procedure combining **subsampling** with high dimensional selection algorithm such as the **lasso**
- Algorithm
 - Perform *B* logistic lasso on subsamples of size $\lfloor n/2 \rfloor$
 - For each variable calculate

$$\hat{\pi}_{p}^{\lambda} = \frac{1}{B} \sum_{b=1}^{B} I\left\{\hat{\beta}_{p}^{\lambda, b} > 0\right\}$$

D

• $\max(\hat{\pi}_p^{\lambda})$ over the grid of λ values

Propose an algorithm using the subsampling idea of Stability Selection adapted to the analysis of spontanous reporting data

Stability Selection: an alternative sampling

- Very sparse binary outcomes
- We propose an imbalanced sampling
 - Let's assume there are n_1 cases (Set S_1) and n_0 observations with no AE (Set S_0)
 - 1. Draw with replacement n_1 observations from S_1
 - 2. Draw without replacement R observations from S_0

In our experiment, we empirically fixed $R = \max(4P, 4n_1)$

- Computational and numerical advantages
 - Running the algorithm on much smaller subsamples
 - Having more 1 helps for the convergence of the logistic lasso

Stability Selection: Variable selection criterion

• For one subsample *b* calculate

$$\hat{\pi}_p^b = \frac{1}{\#H} \sum_{\eta \in H} \mathrm{I}\{\hat{\beta}_p^{\eta,b} > 0\}$$

- η : number of regression parameters in the models H: Models with 1 to 50 parameters
- For each drug, we obtain an empirical distribution of $\hat{\pi}_p$ from the B subsamples
- Choose a quantile q_{α} for these empirical distributions
- Select a drug if $q_{\alpha} > 0$
- Simulations to help choosing q_{α}

Simulations (1)

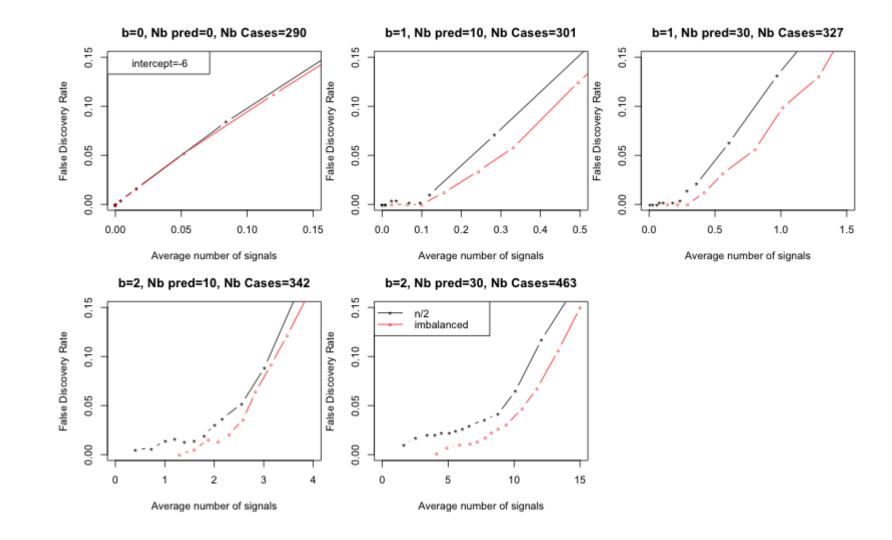
The purpose of the simulation study was twofold

- 1. Compare the proposed sampling strategy with $\lfloor n/2 \rfloor$
- 2. Help us deciding which quantile to choose for the drug selection

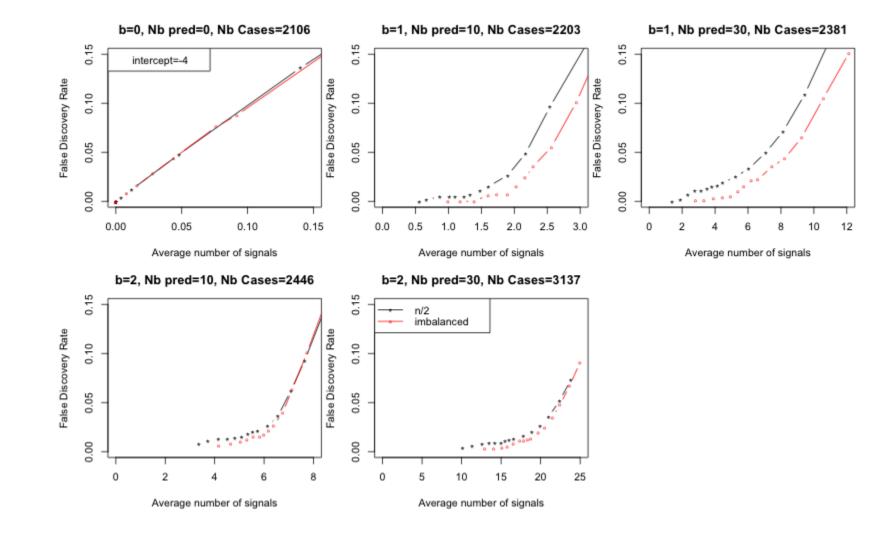
Simulations (2)

- AE generated according to a logistic regression model
 - $y_i \sim Bernouilli(\alpha_i)$
 - $\alpha_i = 1/(1 + \exp(\beta_0 + \boldsymbol{\beta} \mathbf{x}_i))$
- The X matrix is that of the French data (period 1995-2002)
 - 1111 drugs and 117160 observations
- The model depends on three parameters
 - The intercept β_0 (control the number of cases): -8, -6, -4
 - The number of true predictors: 0, 10 or 30 (the true predictors are randomly chosen for each dataset)
 - The value of the regression parameters for the true predictors meta: 1 or 2
- 250 datasets for each configuration

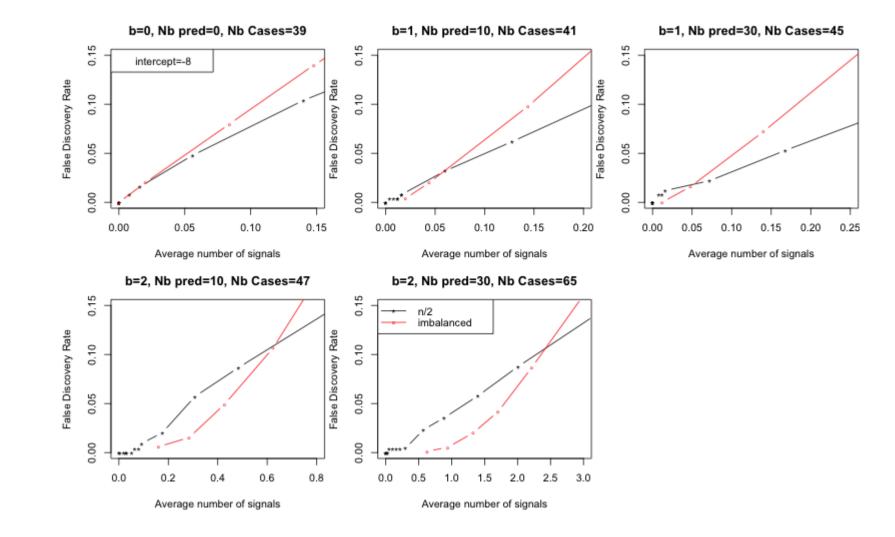
Simulation results (1): Common AEs - β_0 =-6



Simulation results (2): Very common AEs - β_0 =-4



Simulation results (3): Rare AEs - β_0 =-8



Simulation results (4): choice of a quantile

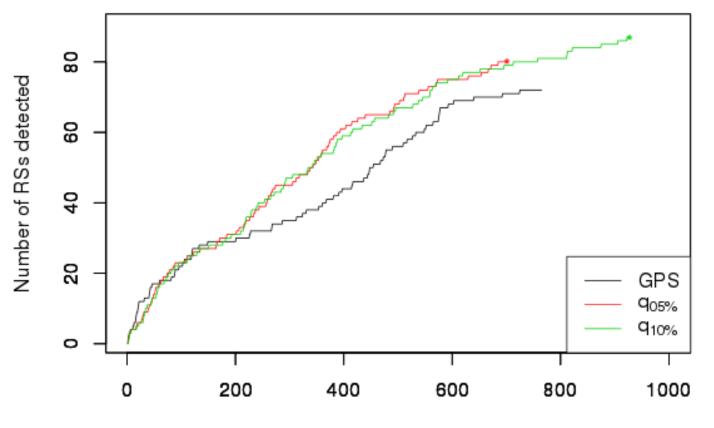
- FDR according to several quantiles
 For a given quantile the FDR decreases when
 - The AE is common
 - The number of true predictors increases
 - The strength of the association increases
- $q_{05\%}$ keeps the FDR lower than 10%
- For more common AEs $q_{10\%}$ seems to be sensible choice

intercept	beta	Nb pred	Nb Cases	q 0.01	q 0.05	q 0.1	q 0.15
-8	0	0	39	0.000	0.080	0.300	0.776
-8	1	10	41	0.004	0.098	0.286	0.733
-8	1	30	45	0.000	0.072	0.279	0.669
-8	2	10	47	0.006	0.049	0.217	0.508
-8	2	30	65	0.001	0.020	0.087	0.224
-6	0	0	290	0.000	0.000	0.016	0.112
-6	1	10	301	0.000	0.000	0.034	0.125
-6	1	30	327	0.000	0.000	0.031	0.099
-6	2	10	342	0.000	0.016	0.020	0.064
-6	2	30	463	0.001	0.010	0.013	0.022
-4	0	0	2106	0.000	0.000	0.016	0.044
-4	1	10	2203	0.000	0.000	0.007	0.016
-4	1	30	2381	0.001	0.003	0.005	0.015
-4	2	10	2446	0.006	0.010	0.015	0.017
-4	2	30	3137	0.003	0.004	0.008	0.012

Empirical evaluation

- French data from the period 1995-2002
- Evaluation based on a set of 181 reference signals
 - Alerts launched by an expert committee from the French drug safety agency
 - 68 different AEs
- Comparison with a disproportionality method: Gamma Poisson Shrinker (Dumouchel 1999)

Results of the empirical evaluation



Number of signals generated

Conclusion and perspectives

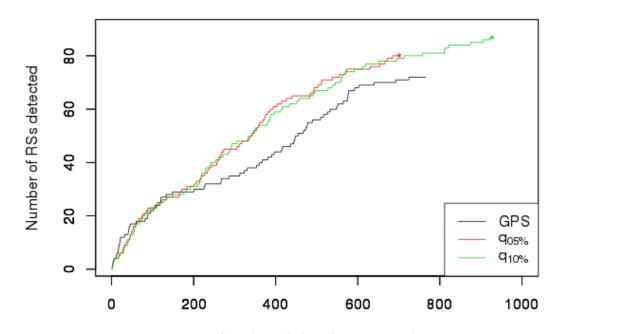
- We have proposed an extension of Stability Selection adapted to the analysis of pharmacovigilance data.
 - More powerful than the $\lfloor n/2 \rfloor$ sampling in most situations
 - Could be suited to other types of data with sparse outcomes
 - Performed better than GPS on an empirical study
 - Faster than the $\lfloor n/2 \rfloor$ sampling
- One limit lies in the selection strategy
 - Required simulations to help us deciding which quantile to choose
 - Ideally, it should be based on an estimate of an error criterion such as the FDR

Thank you for your attention

Results of the empirical evaluation

Imbalanced sampling

Number of RSs detected



Number of signals generated

GPS 905%

q_{10%}

β_0	eta	n. true pred.	n. of cases	Imbalanced Sampling	$\lfloor n/2 \rfloor$	Ratio
-8	NA	0	39	3.08	122.63	39.8
-8	1	10	41	4.28	107.89	25.2
-8	1	30	45	4.69	105.95	22.6
-8	2	10	47	4.85	107.11	22.1
-8	2	30	65	4.86	118.25	24.3
-6	NA	0	290	4.75	70.26	14.8
-6	1	10	301	4.74	69.07	14.6
-6	1	30	327	4.76	67.97	14.3
-6	2	10	342	4.81	67.51	14.0
-6	2	30	463	4.84	53.87	11.1
-4	NA	0	2106	4.92	8.92	1.8
-4	1	10	2203	5.04	9.63	1.9
-4	1	30	2381	5.16	9.54	1.8
-4	2	10	2446	5.39	10.91	2.0
-4	2	30	3137	5.92	11.19	1.9