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Overview

• Motivation and target of inference.

• Dynamic marginal structural models and inverse probability weighting.

• Problems with simulating from DMSMs & examples.

• Conclusions.
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Motivation and Target of Inference
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Motivation

• Marginal structural models (MSMs), fitted by the method of inverse

probability of treatment weighting (IPTW) have been developed to

cope with time–dependent confounding.

• Their superiority to standard regression adjustment, especially with

longitudinal data and survival analysis, has been emphasised.

• The parameters of MSMs always have a clear causal interpretation,

e.g. like comparing dynamic treatment strategies in an RCT. In

contrast, the parameters of e.g. proportional hazard models with time-

dependent covariates do not necessarily have a causal interpretation.

• IPTW yields consistent estimates of marginal causal effects if the

MSM is correctly specified and time-dependent confounding fully

observed.
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• It seems obvious that we would want to evaluate the use of MSMs

and the performance of IPTW (e.g. for finite samples) on simulated

data for which we know the ‘truth’,

– e.g. to evaluate robustness towards violations of assumptions.

• Constructing a simulation algorithm can also be very instructive for

understanding the model class used.

• However, especially for survival models, it is not straightforward to

simulate from a given MSM. As we will see, the problem is essentially

one of non–collapsibility.
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Example: HIV Studies

Longitudinal HIV Studies (e.g. Cain et al., 2010, 2011)

Earlier research: is antiretroviral treatment helpful / by how much?

Current research: when should antiretroviral treatment start, e.g. as

soon as CD4–count drops below 500 or below 300?

Future research: when, depending on patient’s history, should we

switch between different antiretroviral treatments?

Observational Data: so far mainly observational data available, doctors

make treatment decisions as they think best.
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Target of Inference

Ideally: target of inference is clear if we can

— formulate decision problem that will be informed

— describe experiment to measure the desired quantity explicitly

⇒ should guide the design, collection of data, assumptions, and analysis.

Here: ideally, randomise patients to different strategies

→ “start treatment when CD4 drops below 600 / 500 ... / 200”

Aim: Compare survival chances under these different strategies.

⇒ e.g. 5–year or 10–year survival probabilities.
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Data Situation

A1, A2, . . . “action” variables → can be ‘manipulated’

L1, L2 . . . covariates → (obs.) background information (incl. ‘at risk’)

Y response variable, here (some aspect of) survival

all measured over time, Lt before At

X̄t = (X1, . . . ,Xt) past up to t X̄t = (Xt,Xt+1 . . .) future from t

(Continuous time also possible)
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Strategies

Strategy s = (s1, s2 . . .) set of functions assigning an action

at = st(l̄t) to each history (l̄t)
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Types of strategies

(Murphy, 2003)

static: fix st ≡ at regardless of l̄t, t = 1, 2 . . ., e.g.

“never treat” s̄ = 0;

“start treatment at t = 3, stay on” s̄2 = 0 and s̄
3 = 1.

dynamic: st indeed function of l̄t for some t = 1, 2 . . ., e.g.

“start treatment when Lt first drops below 350, never stop”

i.e. st(l̄t) = 1 if {∃k ≤ t s.t. lk < 350} otherwise = 0.

Note: under dynamic strategy s we don’t necessarily know actions in

advance as they depend on the random histories.
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Strategies Well Defined?

Strategies:

must be defined in advance, and functions of the past, as in actual

randomised trial.

Counter-example:

“patients who die before they start treatment belong to control group.”
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Target of Inference (Formally)

Effect of a strategy: property / parameter of the intervention

distributions (Pearl, 2000)

E(u(Y ); do(s)), s ∈ S

where do(·) means we follow a given pre-specified treatment strategy,

u(·) utility function. (Can also use potential responses Y (s))

Marginal Structural Models (MSMs):

parameterises (aspect of) E(u(Y ); do(s))
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Identifying Assumptions

Inference on MSMs from observational data relies on:

“No Unmeasured Confounding” (Robins, 1986; et al.)

“Stability” (Dawid & Didelez, 2010)

Here:

sufficient to observe L,

can then ignore U 1st treatment

A1

Covariate 

L

2nd treatment

A2

outcome

Y

general health

U
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Dynamic Marginal Structural Models

and Inverse Probability Weighting
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G–Computation / Formula

(Robins, 1986)

Observational joint distribution:

P (Y,A2, A1, L, U) = P (Y |A2, A1, L, U)

P (A2|A1, L)P (L|A1, U)P (A1)P (U)
A1 L A2 Y

U

G–Formula: set A1 = a1, A2 = a2, marginalise the rest

P (Y ; do(a1, a2)) =
∑

L,U P (Y |A2 = a2, A1 = a1, L, U) P (L|A1 = a1, U)P (U)

=
∑

L P (Y |A2 = a2, A1 = a1, L)

×P (L|A1 = a1) A1 =a1 L A2 =a2 Y

U

(Note: same as “extensive form analysis”, Dawid & Didelez, 2010)

Estimation: estimate cond. distributions, use MC to predict effects.
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Marginal Structural Models (MSMs)

(Robins et al., 2000)

MSM: parameterises aspect of P (Y ; do(s)),

e.g. marginal structural proportional hazard model.

Rationale

P (Y ; do(a1, a2)) =

∫
joint

P (A2 = a2|A1 = a1, L)P (A1 = a1)

⇒ fit an MSM to observational data but with weights

⇒ inverse probability of treatment weighting (IPTW)

⇒ can be seen as ‘change of measure’

(weights = R-N derivative P (·; do(s))/P (·; obs)).
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Weights

Different ways to calculate weights:

— time-fixed outcome ⇒ fixed weights

— survival outcome ⇒ weights depend on ‘at risk’

— static strategies: typically, each subject represents it’s ‘own’ strategy

— dynamic strategies: subject contributes to more than one strategy
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IPTW for Static Strategies (1)

Most popular: weights for subject i at time k (if still at risk)

Wk,i =

k∏

t=1

1

P (At = at,i|L̄t = l̄t,i, Āt−1 = āt−1,i)

⇒ ‘change of measure’: in weighted data, each subject’s treatment like

randomised.

⇒ carry out any inference (on weighted data set) that would be valid

under randomisation of treatment.

Note 1: problems with rare treatments ⇒ stabilised weights.

Note 2: also for continuous time processes (Roysland, 2011)
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IPTW for Static Strategies (2)
(Hernan et al., 2006)

Alternatively:

— identify strategies to be compared

— count every subject in every strategy that they comply with as long

as possible, then artificially censor.

Example: “start treatment at time t”

⇒ every subject not on treatment by t can be included until t.

⇒ Strategy specific weights for individual i under strategy s = a
∗:

Wk,i(s) =
k∏

t=1

I{at,i = a∗}

P (At = at,i|L̄t = l̄t,i, Āt−1 = āt−1,i)

(see also Gran et al., 2010)
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IPTW for Dynamic Strategies
(Orellana et al., 2010)

⇒ Strategy specific weights for individual i under strategy s:

Wk,i(s) =
k∏

t=1

I{at,i = st(l̄t,i)}

P (At = at,i|L̄t = l̄t,i, Āt−1 = āt−1,i)

⇒ create ‘replicants’ for each strategy

⇒ weights + artificial censoring

⇒ uses all data

Example: patient starts treatment at t = 4

we recorded L1 = 500, L2 = 450, L3 = 400, L4 = 350 ⇒

– agrees with “start when Lt ≤ 300” at t = 1, 2, 3

– agrees with “start when Lt ≤ 400” at t = 1, 2; etc.
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IPTW = IPCW

(Hernan et al., 2006; Cain et al., 2010)

Artificial censoring:

can regard weights as ‘inverse probability of censoring weights’

Rationale:

P (remaining uncensored wrt. s) = P (action agrees with strategy s).

⇒ IPCW prevents selection bias due to artificial censoring.

Note: ‘natural censoring’ → separate process.
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Dynamic MSM — Example

Example: let sx = “start treatment when CD4 drops below x”

Dynamic MSM: hazard function under strategy sx

λ(t; do(sx)) = λ0(t)ϕ(x, t;β)

(Here, omitting baseline covariates from notation.)

Choose ϕ(·) sufficiently rich and flexible, e.g. constant hazard ratio

implausible.

⇒ evaluate target of inference, e.g. 5-year survival.

Note: model in terms of strategy, not treatment sequence.
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An Application

“When to start”: Cain et al. (2010), French Hospital data on HIV.

Using IPW, artificial censoring, for dynamic strategy authors find

start when first Prob. 5-year survival 95% CI

CD4 < 500 0.95 [0.91,0.98]

CD4 < 400 0.93 [0.90,0.97]

CD4 < 300 0.94 [0.92,0.96]

CD4 < 200 0.91 [0.89,0.94]

Note: analysis more plausible with ‘grace period’.
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Simulation Studies to Evaluate MSM/IPTW
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How to Simulate from MSM?

Wanted: find data generating mechanism for {Ūt, L̄t, Āt, Y } s.t.

(1) when simulating randomised trial MSM assumptions satisfied

(2) when simulating obs. study exhibit time-dependent confounding.

Note: difference between (1) and (2) only in P (At| past ).

Problem:

(1) marginal over Ūt, L̄t;

BUT (2) best implemented with conditional models.
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DAGs and MSMs

Data generation via DAG — defined by conditional distributions.

P (Y,A2, A1, L, U) = P (Y |A2, A1, L, U)P (A2|A1, L)P (L|A1, U)P (U)P (A1)

A1 L A2 Y

U
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DAGs and MSMs

Data generation via DAG

P (Y,A2, A1, L, U) = P (Y |A2, A1, L, U)P (A2|A1, L)P (L|A1, U)P (U)P (A1)

A1 L A2 Y

U

A1 =a1 L A2 =a2 Y

U

MSM — marginal model for the effect of intervention do(a1, a2):

P (Y ; do(a1, a2))
︸ ︷︷ ︸

MSM

=
∑

P (Y |A2, A1, L, U)P (L|A1, U)P (U)I{A2 = a2, A1 = a1}
︸ ︷︷ ︸

G–formula

⇒ for desired MSM need appropriate choice of rhs factors!

⇒ not feasible for non–collapsible models (logistic, prop. hazard).
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Simulating from MSMs

Static Strategies: with survival–type outcome:

Exact MSM Simulation:

Simulate from given MSM but without Lt −→ Y effect:

Young et al. (2008, 2010) for continuous time;

Havercroft & Didelez (2011) for discrete time (pooled logistic)

(Bryan et al. (2004): similar, but no time depending confounding.)

Approximate MSM Simulation:

Simulate from DAG, without U (no selection bias), with sufficiently rare

event rate such that model is ‘nearly collapsible’: Xiao et al. (2010)
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Exact (Static) MSM Simulation

A1 L A2 Y

U

Essential idea:

P (Y ; do(a1, a2))

=
∑

U P (Y |A2 = a2, A1 = a1, U)P (U)

⇒ choose distribution of U , transform, so as to have desired distribution

P (·; do(a1, a2)). (inverse transform sampling.)

Note: cannot be used for dynamic strategies, as outcome must then

depend on covariates used.
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Approximate Simulation for Dynamic MSM
(Havercroft & Didelez, 2015?)

Wanted: dependence of survival on treatment and CD4 s.t. “starting

at CD4 x” is optimal.

(Structural) Accelerated Failure Time Model:

P (Y ; do(0̄)) =

P

(
∫ Y

0

exp{ξatg(Lt)}dt ; do(ā)

)

.
L k

g
(L

k
)

100 200 300 400 600 700

−1.0

−0.5

0.0

0.5

1.0

1.5

— at baseline Y ; do(0̄) Weibull;

— baseline CD4 depends on ‘unobserved general health’;

— CD4 downward trend, but one-off boost when treatment started;

— still all quite simplistic!
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Simulate Randomised Trial

Truth: simulate N subjects for each sx =“start when CD4 < x.”

Survival functions and Survival probabilities
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0.0
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Y
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; s
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Y

 t* ; s
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t * = 5
t * = 10
t * = 12
t * = 15

Note: model for Y alone does not determine optimal x!
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Flexible Dynamic MSM?

Now: simulate observational data, P (At|Lt, At−1).

Apply: time-dependent MSM hazard model, restricted cubic spline in x

(5, 8, 9 knots) — find max. survival prob.
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Simulation of a Misinterpretation

Kitahata et.al. (2009) “when to start” analysis: compare two groups

(1) “early” start within 6 months while still 350 <CD4< 500;

(2) “deferred” start treatment within 6 months after CD4< 350.

⇒ do not correspond to strategies.

Also: groups constraint to be disjoint and ‘not (1)’ is included in (2),

e.g. patients who die before treatment.

⇒ induces selection bias.
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Simulation of a Misinterpretation

Simulation:

1) true curves — as in RCT

2) correct d-IPTW analysis

3) Kitahata’s two groups.
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⇒ Difference b/w

the two groups is

wrongly exaggerated.
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Conclusions and Outlook

• Dynamic strategies need to be well-defined.

• MSMs can be used for evaluating dynamic strategies by artificial

censoring; can find optimal strategy out of a limited set of strategies...

• ... relatively simple to implement, easy to interpret

• ... but not designed to provide insight into mechanisms

• ... and sufficiently but not too flexible model choice open problem.

• Simulations: data generating process ↔ model assumptions.

Much scope for more realistic simulations.
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